Synthesis of non-prenyl analogues of baccharin as selective and potent inhibitors for aldo-keto reductase 1C3

Bioorg Med Chem. 2014 Oct 1;22(19):5220-33. doi: 10.1016/j.bmc.2014.08.007. Epub 2014 Aug 14.

Abstract

Inhibitors of a human member (AKR1C3) of the aldo-keto reductase superfamily are regarded as promising therapeutics for the treatment of prostatic and breast cancers. Baccharin [3-prenyl-4-(dihydrocinnamoyloxy)cinnamic acid], a component of propolis, was shown to be both potent (Ki 56 nM) and highly isoform-selective inhibitor of AKR1C3. In this study, a series of derivatives of baccharin were synthesized by replacing the 3-prenyl moiety with aryl and alkyl ether moieties, and their inhibitory activities for the enzyme were evaluated. Among them, two benzyl ether derivatives, 6m and 6n, showed an equivalent inhibitory potency to baccharin. The molecular docking of 6m in AKR1C3 has allowed the design and synthesis of (E)-3-{3-[(3-hydroxybenzyl)oxy]-4-[(3-phenylpropanoyl)oxy]phenyl}acrylic acid (14) with improved potency (Ki 6.4 nM) and selectivity comparable to baccharin. Additionally, 14 significantly decreased the cellular metabolism of androsterone and cytotoxic 4-oxo-2-nonenal by AKR1C3 at much lower concentrations than baccharin.

Keywords: AKR1C3; Aldo-keto reductase; Baccharin; Cancer; Inhibitor; Selectivity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3-Hydroxysteroid Dehydrogenases / antagonists & inhibitors*
  • 3-Hydroxysteroid Dehydrogenases / metabolism
  • Aldo-Keto Reductase Family 1 Member C3
  • Dose-Response Relationship, Drug
  • Enzyme Inhibitors / chemical synthesis
  • Enzyme Inhibitors / chemistry
  • Enzyme Inhibitors / pharmacology*
  • Humans
  • Hydroxyprostaglandin Dehydrogenases / antagonists & inhibitors*
  • Hydroxyprostaglandin Dehydrogenases / metabolism
  • Models, Molecular
  • Molecular Structure
  • Structure-Activity Relationship
  • Trichothecenes / chemical synthesis
  • Trichothecenes / chemistry
  • Trichothecenes / pharmacology*
  • Tumor Cells, Cultured

Substances

  • Enzyme Inhibitors
  • Trichothecenes
  • baccharin
  • 3-Hydroxysteroid Dehydrogenases
  • Hydroxyprostaglandin Dehydrogenases
  • AKR1C3 protein, human
  • Aldo-Keto Reductase Family 1 Member C3